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In this article the nature of the peculiarities (in the neighborhood of 

a Point of the application of concentrated forces and moments) of the 

functions u, . . . , T1, . . . , II1 which represent the displacements, 

stresses, and moments in the shell are investigated. The problem is 

solved in its general setting (the shell is of arbitrary shape) for 

general equations of moments of the linear theory of shells. Besides, 

for shells of positive Gaussian curvature, the problem is considered 

also for the equations of the membrane (“momentless’) theory of shells. 

The results obtained in this work are generalizations of results ob- 

tained earlier for shells of particular type. For example, the case when 

the concentrated forces and moments act on a spherical shell was treated 

in an article by Col’denveizer [l]; the case of a cylindrical shell was 

considered by Darevskii [2]. Chernykh 121 dealt with shells of arbitrary 

shape, but did not carry out the investigation to the end. 

For the solution of the problem the author makes use of results ob- 

tained for fundamental solutions of partial differential equations of 

the elliptic type. The information required is presented. for eXamPle. 

in the works of Gel’fond and Shilov !41, Levi [51, Ion [gl. Lopatinskii 

[T] and others. 

The problem is the following: to express in explicit form the main 

singularities of the solutions II, t’, 1 of the differential equations of 

equilibrium for a shell when this shell is subjected to the action of a 

concentrated force and concentrated moment. 
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A fundamental solution of a differential equation L(o) = 0 is a solu- 

tion of the operator equation L(Q) = 6(< - <a), where J!. is a differential 

operator; < = {{,, . . ., E_,), <e = {j,e, . . . , tno> are vectors in an n- 

dimensional space, and 6 is the Dirac function. 

The connection between the problem and the fundamental solutions be- 

comes evident if one recalls that a concentrated force is usually con- 

sidered as the limit of a definite distribution of the loading, or as 

the solution of a differential equation having a definite singularity. 

In what follows we shall use the first definition with certain refine- 

ments which permit us to apply the theory of generalized functions. 

By a concentrated force, ’ applied at the point < = 0, we shall mean 

the limit of the sequence of distributed loads qv satisfying the follow- 

ing conditions. 

1. For every given AI > 0, and for 1 a) < M, 1 bl < II, the quantities 

] \ 9v (8 4 1 
a 

are bounded by a constant independent of n, b, and v (depending on I!). 

2. For all n and b different from zero 

~~~4mdS = { 1 

0 (a<b<O, o<a<b) 
(a<O<b) 

a 

‘Ihe limit of functions qv possessing these properties is called the 

Dirac E-function in the theory of generalized functions [41. I!ence the 

accepted definition of a concentrated force is equivalent to that of a 

Dirac b-function. 3he sequence of the functions 7v will be called a 6- 

type sequence. 

We shall next give the definition of a concentrated moment. A con- 

centrated moment is the limit as v - w of the distributed loadings qv, 

which have the form of the function represented in Fig. 1. 

‘Ihe branches of the function qv to the right and left of < = 0, form 

E-type sequences. We shall require that as v - m these loadings yield a 

constant moment of intensity one with respect to the point 5 = 0, and 

that the resultant be zero. 

llle first of these requirements 

b 

yields the equation 
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The second requirement leads to the following equation 

lim q(E)dE = 0 (a<o<b) \ . 
“- r, 

(2) 

From (1) one obtains, through integra- 
tion by parts, the result 

(3) 
(I (1 

With the aid of (2) and (3) we can 
show that 

lim qv = -S'(O) 
Y--r00 

Here 6’ denotes the derivative of the g-function which, according to 

[41, is defined in the following way. 

Let cp(<) be any function belonging to the class of k-times (k> 2) 
differentiable functions. If f(g) is such that 

then f(k) = 6’((; - e,,). ‘Thus we must show that 

ljm j qy (8 P (El di = 9’ (0) 
-n 

(4 

Indeed, integrating (4) by parts, we obtain 

‘lhe first term on the right-hand side is 
second one is equal to o’(O) in view of (3) 
and b. 

\ @(EM \qv(lVv 
ll a 

equal to zero by (2) , the 
and the arbitrariness of a 

Let the given shell be repre,sented by means of orthogonal coordinates 
(a, p). The intensity of a unit concentrated force, and the intensity 
of unit concentrated moments directed along the a and /3 axes, can be ex- 
pressed by means of the functions 

respectively, where 

6 1 aa 1 88 
AB’ --. AB= cVf3 _A’Ba? 

A and I3 are the coefficients of the first quadratic 
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form of the surface of the shell. In what follows, we shall assume that 

the surface is expressed in terms of orthogonal, conjugate coordinates. 

We shall begin with the differential equations of equilibrium and 

with displacements which can be expressed in the form 

Here u, v, and w are displacements, X, Y, and Z are the components 

of the loading, 

and the Ai; 

Aii are operators containing derivatives of higher order, 

are operators involving the remaining terms. 

The content of the operators Ai, will be taken from the equations of 

equilibrium given by Gol'denveizer 191. Then the matrix from the oper- 

ators Ai; will have the form 

Here 

pi=l+ha 
3Ril ' 

(i = 1, a, 

A=$$+&& ~n=l+& 

Further, we have introduced the symbols 

which will be used in the sequel. 8, and R, are the principal radii of 

curvature; 2h is the thickness of the shell. It is assumed that A, R, 

R, and R, are nonvanishing functions which have derivatives of the re- 

quired order, and that A and B # a. 

Let us denote by lik the algebraic cofactor of the term Aii in the 
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matrix /biill, and 1 et us write down the matrix llli,II 

where 

2 3-6 1 3-6 53 = 
z 

- 
2H1 

’ rz3 = - -- 
fil 2Re 

l+a 1 r31 i+a 1 = 
2Ra 

- - - - -. 
RI 

, rs2 = 
2R1 Re 

The system of equilibrium equations is a system of the elliptic type, 
and the elliptic operator A has the form 

In what follows we shall drop the quantities h2/JRiRR (i, k 
because they are small compared to one. We shall assume that 

=l, 2) 

(7) 

Let us investigate the problem for the case when the concentrated 
force acts in the direction parallel to a coordinate axis. Then, on the 
right-hand sides of the system (51, one must set X = S/M, Y = z = 0, 
and one has to find the solution of the system 

A,,u + A,,v + A,,w =- - g -& 

Making use of Levi’s method [5] , we express ~1, u and w in the form 
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where fi is still an unknown function, @(a, p, a,,, PO) is a fundamental 
solution of the equation 

- I% ABR(D = 6 (ao, PO) 

Levi gives a general method for finding @. For the case under con- 
sideration when A has the form (7)‘ the principal part of the funda- 
mental solution yz that is the part of highest singularity, has the form 

q,=--_ 3 
36 x 64 x 2nh8 (1 + a) 

r6 In 9, r2= AB(a-uo)“+B2(~-~)2 

We shall express the function CD in the form Q = y + P. Here, and in 
what follows, P will represent all terms of lower singularities than 
those of the terms written out explicitly. The symbol Y may thus stand 
for different expressions in different formulas. We give certain rela- 
tions which we shall need 

Alp=-&r41nrs+‘4, A2$=---~r~lnP+Y 

o,:ng = -&rw- &A8(a---ao)~lnr2+ Y 

D,:Azq = -&lnP+ UT, 
6 

x = hs (1 + 6) 

The derivatives of Qyl A*y, with respect to p can be written down in 
a similar way. For the dete~ination of the unknown function fr one can 
obtain a system of Fredholm integral equations of the second kind by 
substituting (8) into the original equations. However, here we shall not 
consider the construction of the functions fi because the aim of our 
investigation is the finding of the principal singularities, which are 
contained in the first terms of the right-hand sides of the equations 
(8). We shall prove this last assertion. 

In order to find the principal singularities of the solutions, it is 
sufficient to consider a system of equations in which only the highest 
order derivatives are retained (see, e.g. [6] ). In the case under con- 
sideration, if the original system of equations should have constant co- 
efficients, then the expressions u = l,,@, v = l,,@, and zu = I,,@ would 
give the required solutions. 

‘Ihe solutions of a system with variable coefficients will be of the 
same form in the neighborhood of the point where the concentrated forces 
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are applied. ‘Ihis follows from the work of Bers [RI. There it is proved 

that the singularity of the fundamental solution of a differential equa- 

tion with variable coefficients in the neighborhood of a singular point 

consists of the singularities of the fundamental solution of the equa- 

tion with constant coefficients, and of singularities of lower order 

than the principal ones. ‘Ihis assertion is valid also for the deriva- 

tives of the fundamental solution. 

Ihe problem of the action of concentrated forces Y and Z is solved 

in an analogous manner. l’he results of the computation are given in 

Table 1. 

Let us now consider the action of a concentrated moment. Having de- 

fined it as the limit of a normally distributed loading, we shall look 

for the solution of the following system 

&,u + &2v + fh3w = 0 (Ml = &j-w) 

n,,u + n22v + A23w = o (M, = - & Dad) (9 

A31u -k A32V + A33w = z Mi (i = 1, 2) 

where M, stands for the moment about the a-axis, whi 

moment about the p-axis. 

J.e M, represents the 

We solve the system (9) by the same method, excey: ,t the function 0 in 

(8) is replaced by UJ~ which is a solution of the equation 

From the theory df generalized functions it is known that if @ is a 

fundamental solution of the equation A@ = 6, the &/a, is a solution of 

the equation A@ = &/&I. From this it follows, as was to be expected, 

that the principal parts of the solitions in the given case can be ob- 

tained by simple differentiations of the obtained principal parts of the 

solutions uZ, vZ and wZ for the action of the concentrated force Z with 

respect to the same variable with respect to which the e-function is 

differentiated that stands on the right-hand side of the third equation 

of (9). ‘Ihe solution is thus obtained easily. For example, if the act,i.on 

is that of the concentrated moment directed’along the a-axis, then the 

solution has the form u = D u 

*p%P 

p Z, 

where T,, . . . . H, 
. . . , w = npwz, T, = Lq,, 1. . ) H, = 

are the stresses and moments in the shell. 

For the moment along the p-axis we obtain u = -DauZ, . . . ,?I, = -D$IIZ. 

We shall next consider the membrane equations of a shell of positive 

Gaussian curvature (the last restriction is essential, because the dif- 

ferential equations will be of the elliptic type only for such shells). 
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Let us split the matrix of the operators of the system Aik into the 
principal and secondary matrices in the same way in which this was done 
for the moment equations Aik = Aii + Ai;. In accordance with the differ- 
ential equations of equilibrium in the displacements [91, the matrix has 
the form 

‘lbe matrix of the algebraic cofactors Zik will be symnetric in the 
given case, namely, lik = lki, i, k = 1, 2 and its elements have the form 

41 = (I - 6) (dcQ + $&Q+&), 112 = 

113 = I+ a4 [(& + &) &t + ‘lSDpap] 

4, = (I - 6) ( -gpG + rdsap) 
zz3 = 9 DP [r,,DA + (& + $) DpBg 1, 

Here 

1 1 
( 

2a 1 
r11 =y- &&j&+B ) 

24-G 1 
9 

--- 
53 = R1 

& 

The operator A = lAiil has the form 

I-6 
- 2 p'D$ 

zs3 = $2 A= 

2+cr 1 
, rt3 = --- 

R!4 RI 

A = (I- 4 (1 - 62) 1 
2 ( j&- 0~: + & Dp;)' 

- 

- 

U 

V 

W 

X 

- xsD, [ rnsl(l) - 

- 2&/r*] r2 In r2 

- 

- 

TABLE 1. 

- xl In r2 

- 
x3Dp [m32 

(1) + 

+ 2pz2/r2] rz In r2 

- 

- 
Z 

x3D, [ml3 
(1) _ 

- (1 + 0) py2/r2] ra In r2 

x4 Imzs 0) + 

-j- (1 + a) p2/r2] r2 In r2 

- Xpra In r2 
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Here 

(3 - 0) (I+ 0) (1 + @ 1-t-a 3 (1 -a”) 
x1 = i6nEh ’ xa - 8nEh ’ x3 = 64nEh’ x4 - 32nEh3 

1 1 
p----t Rl Rz 

m13(1) x ; (ig - 5y?) , 

3 - 20 mgl(l) a is - Ra ) m3r(l) =;1 - 3%$! 

x=A(a-a~), Y=R(p-iw, r = v/A” (a - a# + F(p - fi@ 

- 

- 

TI 

T9. 

& 

Cl 

Gs 

Hl 

X 

- & D, (3 + a) In re t 

+2(i+o)$] 

& D, 
L 

(1 - o) In 1.2 - 

- 
2 (I+ Q) g] 

- 4; Dp (1 - o) In ra t 
[ 

+w+&] 

gz Daapp [ma@) + 

+ 2t] r?ln rz 

ED 3 [rq~ 
(2) _ 

r&c a PP 

- at] r2 In r2 

- EG Dp 
1 

rnelt2) In r2 - 

_!_g$+,T+ 

In Table :! 

TABLE 2. 

Y 

tn Dp 
[ 

(1 - a) In r2 - 

-2(1+4$-j 

- & Dp (3 + a) In r2 i- 
[ 

+ 2(i+o)$] 

- d D, 
[ 

(1 - a) In r2 t 

+ 2(1$&] 

& Dc13clp il 
md2) + 

+ 2r] r2 In r2 

& Dasclp 1 m 
(2) _ 

- 2t] r2 In r2 

h2 -- 
65c D, I 

rnezc2) In r2 - 

1-tGY2 ---- 
RI r2 &$+ 

- 

- 
Z 

1 
&ii 

mu@) In r2 - 2t - 

- (l+qP$q 

t 
[. 
m@) In r2 + 2t + 

+ (lfG)Pqq 

8$ Do,f$ 
[ 
ma@) i- 

+ (1 + a) t] r2 In r’ 

& [ (1 + 4 ln ra + 

+2(1-q;] 

& [ (1 + 4 In r2 + 

+2(1-6)$] 

I--axy -- 
2n rz 
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,*l(2) = y 
1-228 

* +.1, 
m4*(2) = - 1. - 5 

RI Ra ’ 
m51(2) = +2 - $ 

3 + 23 3 - 2,s n752(2) = - - 
RI + Rz ’ 

I i 

V 
XlYl 

xPa F 

W -- 
; D, I 

2 (1 + aj - 

- m13(3) In r12 - 

f 
1 

I 
- 43) EY 

r12 3 

Here 

TABLE 3. 

.- 
Y 

- x rrt~2(~) In r12 

- 3’,[W +G) + 

+ rn1at3)) ln r12 - mmt3) * na 1 

. --- ..__ -._ 
Z 

- $D= (2 (I+ a) - 
C 

- qs@)) ln rll _ m,,(3) ?f?Y 
9 1 

-- ; Dp [ (2 (1 +a) + 
+ rn1~(~)) In r12 - ma3(3) q 

rP 3 

; A2r12 In r12 

~1 = If%-4 (a - QO), ~1 = VRB (P-PO), 
-- 

rl = If RR~M (a - a,# + RIB (p - oo)* 

m11(3) = g2 + $2 $ 2* , 

._lfir;ri;t 

&3) = g2 + iI + 2Ltl$ 

16nEh ’ 
43) - HI2 - ha - 

RI& ' 
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TABLE 4. 

Here 

2Eh 
cl= - 3 t1 _ az> (Da”, + GDP;) wig 

HI = 

2Eh 

(i=X, Y, 2) 

Note. The index i indicates that w must be taken from Table 3 for 
the corresponding force. 

Here R, and R, are of the same sign, and, therefore A is an elljptic 

operator. 

The method of solution is here repeated in the same order as for the 

moment equations. Its description is, therefore, omitted. Only a few 

expressions will be given which are needed for better understanding. 

‘Ihe function L+J, which denotes the principal part of the fundamental 

solution of the equation 

for the membrane operator A, has the form 

-m= r2]nr2 

*=lGxEh(l-cQ ’ ” 
r12 = A2&(a - 310)2 -+- B2R,@ - PO)" 

Performing computations analogous to the preceding ones, we obtain 

the principal singularities of the functions u, II and w (Table 3). 

The components of deformation E,, . . . , T are found by differentiat- 

ing the functions U, u and w. The stresses and moments T,, . . . , Ii, are 
expressed in terms of E 1, . . . , T with the aid of the relations of 
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elasticity. Performing the calculations, which will not be given here, 

we obtain the results which are given in Tables 2 to 4 for the general 

as well as for the membrane cases. 

The r,esults of this work for a circular cylindrical shell have been 

comparei with the results obtained by Darevskii [21. It was found that 

the :.lSymptotic formulas given here for u, V, T,, T,, S, and S,, under 

the action of the concentrated forces X and Y, and also G, and G,, under 

the action of the force Z, coincide with the corresponding formulas in 

[2J . The remaining formulas do not agree. One can show that the dis- 

agreement is caused by the fact that in the present work and in [21 

ri;i JC ;nre used different conditions of elasticity. ‘lhe proposed method 

I .:iFplicable for arbitrary versions of the elasticity relations. 

For a spherical shell the results of this article coincide with the 

I 1 ::ults of Col’denveizer [l] . 

Ille author expresses his sincere gratitude to A.L. Gol’denveizer for 

proposing the problem and for valuable consultations. 
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